FACILITY FORM 602

@ https://ntrs.nasa.gov/search.jsp?R=19680022022 2018-07-23T23:03:25+00:00Z

A MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL
PROBLEMS WITH FUNCTIONAL DIFFERENTTAL SYSTEMS

by

H. T. Banks"
Center for Dynamical Systems
Brown University

Providence, Rhode Island

(mnu)

i (CODE)
(PAGES) i P
(NASA CR OR MX OR AD NU BER) (aTEGORY)

This research was supported in part by the Air Force Office of
Scientific Research, under Grant No. AF-AFOSR 693-67, in part by
the National Aeronautlcs and Space Administration, under Grant No,

NGR 40-002-015 and in part by the National 801ence Foundation,
under Grant No. GP 902k,



T
g,

A MAXTMUM PRINCIPLE FOR OPTIMAL CONTROL
PROBLEMS WITH FUNCTIONAL DIFFERENTTAL SYSTEMS

by

H. T. Banks

In this note we present a maximum principle in integral form
for optimal control problems with delay-differential system equa-
tions which also contain delays in the control. Recent related

results for particular cases of the systems discussed below may be

“found in [1], [5], and [6].'»Vector matrix notation will be used and

we shall not distinguish between a vector and its transpose.

1t

Let o and t_ be fixed in R with -w<a <%, I
&) 6] 0 O

[a,a) be a bounded interval containing [o ,t ], and put I'
(t,,@). For x continuous on I and % in I', the notation
F(x(+),t) will mean that F 1is a functional in x, depending on
any or all of the values x(7), a Tt % will denote the
class of absolutely continuous n - 1 wvector functions on [ab’toj'
et Q@ Ybe a given convex subset of the class of all bounded Borel
measurable functions u defined on I in%o Rr, and 7 Ybe a
given Cl manifold in R2n-l.. The problem considered is that of
ninimizing
tl
I, %, ] ={: £ x(+),u(+),t)dt
' o

over & x 0 x C(I,E" ) x I' subject to



I

(1) X(t)
X(t)

F(x(¢),u(-),t) a.e. on [to,tlj

o (t) on [a,t,]

Il

(1) (F(t),5(6,),8) ¢ 7.
We assume that f = (fo f) = (fo fl fn—l) is an n-vector
b 2 R ]

functional of the form

. . t .
(1) £1(x(+),u(+),t) = B (X(-),t) + éu(s)dsn(t,S)gl(i‘(s),t)
5 )

for 1=0,1,...,n-1,

where the integral is a Lebesgue-Stieltjes integral. Each
hi(E(-),t) is assumed C* in X and measursble in t, and each
gi(ﬁgt) is ¢ in (v,t) on R, The r x 1 vector function
n(t,s) is measurable in t,s, and of bounded variation in s on

[Qb,t]. It is also assumed that the variation of 17 1is dominated

t
by an L (I') function m. That is, \/;=a n(t,s) s mn(t) for
o

t € I'. Finally, suppose that given X compact, XC Rn-l, there
exists an m in L, (I') such that h = (ho,hl,...,hn'l) satis-

fies

|h(x(:),t)| = m(t)

and



|lasrz(), 5 T = B,

for any ¥ e C(I;Rn—l) and X e C(I,X), where ”ﬁ”t =
sup {|V(s)]|: s e [¢,t]} and dh is the Fréchet derivative of h
with respect to x. (]A| denotes the Buclidean norm of AL)

If 65*,u*,§*,t§) is a solution of the above problem, we de-
fine the n X n - 1 matrix function ,ﬁ* for t eI, s e [a,t]

by

-
4

(2) T (5,8) = W (5,8) + Tp(5,8),

v :
where n, 1is such that

t

an[E (+),; ¥1 = [ a7 (£,8)%(s)
: |
6]

for t € I' and all ¥V ¢ C([Ob,t];Rn—l); and

t
Lff@ﬂg@ﬁ%Jf@Lﬂ s <t
s ¥

)

—%
nz(t,s) =

(The existence of.ﬁi is guaranteed by the Riesz theorem.) Then we

have the following necessary conditions:



Theorem: Let (9 ,u ,x ,tl) be a solution to the problem under the

*
assumptions above. 1In addition, suppose that tl is a Lebesgue
point of f(gc*(-),u*('),t). Then there exists a non-trivial n-

vector function A(t) = (A°(t),A(t)) of bounded variation on

* *
[to,tl], continuous at tl’ satisfying.

(a) 2°(t) = constant £0, 7\(1:;) £ O

'b*

— 1 % -, % *
N6 + £ AB)T (B,t)dp = R(t;) for t e [t,b))

“here 7. is defined by (2).
o ) ty
(b) { AB)EE (+), 0 (+),t)dt = ! AB)E(E (+),u(+),t)db

o o)
for all ue .

(¢) The 2n-1 vector

*
t

L d l e — Lo X% * 3% ¥
(Neg) + [ MOV (@,05) - (6,501, MED), M) T ()
o .

* %, ¥ 3 T
is orthogonal to 9 at (X (to),x*(tl),ti), where f‘*(t;) =

& (+), 0 (), ).

The proof of this theorem involves showing that the class of

functions 5 = (F(x(-),t): F(x(:),t) = £(x(+),u(:),t), u € Q)



is absolutely quasiconvex [2] and then using necessary conditions
for extremals given in [2].’ Absolute quasiconvexity 1s s general-
ization of ideas due to Gamkrelidze [4], who first obtained an
integral maximum principle for control problems with ordinary dif-
ferential system equations. The inequality in (b) is'a maximum
principle in integral form for the above described optimal control
problem,
In many particular cases of the systems defined by (1), one
_can show that the multipliers A are actually absoiutely continuous
“and satisfy (a) in differentiated form. This differentiated form
becomes the usual known multipiier equation for syétems with simple
time lags in the state variagies (see [1]). The transversality
conditions given in (¢) also can be reduced to a simpler form for
many special cases of (1).
Included in (1) are many integro-differential systems and
time lag systems which appear in physical problems. For example,
if one modifies slightly the biological population model formulated

by Coocke in [3], one obtains the system equation
x(t) = u(t-1)x(t-1) + B(t)u(t-1-6(t))x(t-7-0(%))
where x(t) is the number in the population at time t, u(t) is

the birth rate at time ¢, and 1 1is the gestation period. Systems

with



t
h(x(-),t) = [ A(t,s)a(x(s),t)ds,
a

o]
which arise in the study of reactor dynamics [7], and with
h(}_{.(' ))t) = G(zt:t):

where E% = f(t+é), 6 € [-T,0], are also special cases of (1).
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